29 november 2022

Wat zijn Lagrangepunten nou precies?

De Lagrangepunten

De Lagrangepunten. Credit: NASA/WMAP Science Team

Missies zoals Planck en Herschel draaien geen rondjes om de Aarde, zoals ‘gewone’ satellieten, maar ze bevinden zich vlakbij een zogenaamd Lagrangepunt. Lagrangepunt 2 in hun geval, afgekort tot L2. Ik had het er van de week ook al op Twitter over en duidelijk is dat het even goed uitgelegd moet worden (voor zover ik het zelf snap). De Aarde draait om de Zon, zoals jullie vermoedelijk wel weten, en in dat Aarde-Zonsysteem worden vijf Lagrangepunten onderscheiden (zie de figuur hiernaast). Dat is niet enkel voorbehouden aan Aarde en Zon, ieder tweelichamensysteem dat draait rond een gemeenschappelijk zwaartepunt heeft vijf van die punten, waarvan er drie liggen op de verbindingslijn tussen de twee hemellichamen. Lagrangepunten zijn een bepaalde vorm van baanresonantie. Door de zwaartekrachtswerking van de twee lichamen (Zon en Aarde in dit geval) kan in een Lagrangepunt een klein object, zoals een satelliet zonder eigen aandrijving een vaste relatieve positie behouden ten opzichte van de twee lichamen. Het was de Franse wiskundige Louis Lagrange die dit in 1772 ontdekte. Voor ruimteschepen zijn vooral L1 en L2 van belang. L1 ligt 1,5 miljoen km vanaf de Aarde, richting de Zon. L2 ligt ook 1,5 miljoen km van de Aarde, maar dan de andere kant uit. In de animaties op deze ESA-site zie je L1 en L2 in beweging. In L1 bevindt zich de SOHO, het Solar and Heliospheric Observatory, dat vanaf dat punt perfect de Zon kan bestuderen. Planck en Herschel – die beiden in één keer werden gelanceerd op 14 mei j.l. – draaien rondjes om L2 heen. In theorie zouden ze zich exact in L2 kunnen bevinden, maar dán liggen ze in de schaduwkegel van de Aarde en krijgen hun zonnepanelen geen zonlicht. De voorganger van Planck, de WMAP, bevindt zich ook bij L2 en de opvolger van de Hubble Ruimtetelescoop, de James Webbtelescoop, zal ook die kant uit worden gedirigeerd. Hét voordeel van L2 is dat de ruimtevaartuigen geen last hebben van storing van electromagnetische straling van de Aarde, maar dat ze daar wel in de buurt van blijven.

Trojanen

Trojanen in L4 en L5 van Jupiter

Trojanen in L4 en L5 van Jupiter. Credit: Wikipedia.

Bijzonder geval van hemellichamen bij een Lagrangepunt zijn de zogenaamde Trojanen. Dat zijn planetoïden die zich in de Lagrangepunten L4 en L5 van de baan van een planeet bevinden en op 60° boogafstand met de planeet mee bewegen. Verreweg de meeste Trojanen bevinden zich in de Lagrangepunten van de planeet Jupiter. In de figuur hiernaast zie je de nu bekende Trojanen van Jupiter in het groen. Op 21 december 2008 waren er 2.900 van dergelijke Jupiter-Trojanen bekend: 1.622 ‘Trojanen’ in het L4 punt en 1.278 ‘Grieken’ in het L5 punt. Jupiter heeft de meeste Trojanen, maar Neptunus en Mars kennen er ook een paar. Bron: Wikipedia + ESA.

Comments

  1. Ole, hoeveel lagrangepunten zou een zwart gat hebben, en hoever reikt dat?

  2. Ook vijf. Hier een artikel over L4 en L5 in een tweetal zwarte gaten die om elkaar draaien: http://iopscience.iop.org/0004-637X/724/1/39/article

    • Correctie: een TWEETAL zwarte gaten heeft inderdaad 5 lagrangepunten, zoals iedere combinatie van 2 hemellichamen. Een zwart gat, zoals edu vraagt, heeft geen lagrangepunten. Een enkel hemellichaam heeft op zichzelf namelijk geen lagrangepunten; die ontstaan alleen daar waar de zwaarekracht van twéé lichamen voelbaar is. Dat is zoiets als vragen waar het gezamenlijke zwaartekrachtscentrum van een hemellichaam is. Die vraag is betekenisloos; dat kan alleen maar als er twee zijn.

  3. “Hét voordeel van L2 is dat de ruimtevaartuigen geen last hebben van storing van electromagnetische straling van de Aarde, maar dat ze daar wel in de buurt van blijven.”

    Hier bedoel je volgens mij het Aarde-Maan L2-punt, terwijl je het daarvoor over het Zon-Aarde L1 punt hebt. (“1,5 miljoen km vanaf de Aarde… In L1 bevindt zich de SOHO… etc.”

    Het Aarde-Maan L2 punt bevindt zich vanaf de Aarde gezien achter de Maan; en daar heeft een satelliet dus geen last van electromagnetische straling vanaf de Aarde. In het Zon-Aarde L2 punt ontvangt een satelliet gewoon straling vanaf de Aarde; behalve af en toe misschien ietsje minder als de Maan er precies tussendoor beweegt. Maar waarschijnlijk staat het Zon-Aarde L2 punt te ver van de Aarde af (1,5 miljoen kilometer) waardoor de Maan deze Aard-straling niet helemaal kan tegenhouden. In het Zon-Aarde L2 punt staat een satelliet denk ik wel in de schaduw van de Aarde, waardoor straling van de Zon wordt tegengehouden.

  4. Avatar foto Paul Bakker zegt

    Na 13 jaar een reactie van mij op deze blog ( er staat een onjuistheid in), vooral omdat er nogal eens naar wordt verwezen, zoals onlangs met de aankomst van deJames Webb Space Telescope bij L2.
    In L2 van het Zon-Aarde-systeem kan een ruimtevaartuig zich niet in de (kern)schaduwkegel van de Aarde bevinden. Die reikt namelijk ongeveer een miljoen kilometer de ruimte in. De zon schijn in L2 om de Aarde heen, oftewel de Aarde bedekt een deel van de zonneschijf gezien vanaf L2.

    Dan een ander punt in de blog (en is meteen een reactie op Hans):
    Hét voordeel van L2 is dat de ruimtevaartuigen die daar omheen draaien de zon voortdurend in dezelfde richting hebben staan. Voor satellieten die koel moeten blijven/zijn (zoals Webb) en een afscherming hebben is dit erg handig.
    Voor instrumenten die de Zon bestuderen is dit natuur lijk óók heel prettig, maar dan is L1 natuurlijk een beter alternatief.
    En L2 beweegt mee met de Aarde om de Zon, dus voor de communicatie hoeft men nooit meer dan anderhalf miljoen kilometer overbruggen. Geen last hebben van storing van elektromagnetische straling van de Aarde is geen/nauwelijks een issue in deze volgends mij.

Speak Your Mind

*

Deze site gebruikt Akismet om spam te verminderen. Bekijk hoe je reactie-gegevens worden verwerkt.

%d bloggers liken dit: