28 januari 2020

Nieuwe methode om exoplaneet-atmosferen te onderzoeken

Dankzij een slimme nieuwe techniek zijn Nederlandse astronomen er voor het eerst in geslaagd om de atmosfeer van een exoplaneet die niet voor zijn moederster langs beweegt, gedetailleerd te onderzoeken. Met ESO’s Very Large Telescope is de zwakke gloed van de planeet Tau Boötis b – gelegen in het noordelijke sterrenbeeld Ossenhoeder (Latijn: Boötes) – rechtstreeks gedetecteerd. Hierdoor hebben de onderzoekers voor het eerst de atmosfeer van de planeet kunnen onderzoeken en exact zijn baan en massa kunnen bepalen, waarmee een vijftien jaar oud vraagstuk is opgelost. Verrassend genoeg heeft het team ook ontdekt dat de atmosfeer van de planeet naar boven toe koeler wordt, terwijl het tegendeel werd verwacht. De resultaten worden op 28 juni gepubliceerd in het tijdschrift Nature. De planeet Tau Boötis b was in 1996 een van de eerste exoplaneten die werden ontdekt, en het is nog steeds een van de meest nabije. Hoewel zijn moederster gemakkelijk waarneembaar is met het blote oog, is de planeet zelf dat zeker niet. Tot nu toe kon hij alleen worden gedetecteerd via de zwaartekrachtsinvloed die hij op zijn ster uitoefent. Tau Boötis b is een ‘hete Jupiter’ – een grote planeet die in een zeer nauwe baan om zijn moederster draait. Net als de meeste exoplaneten schuift de planeet vanaf de aarde gezien nooit voor zijn ster langs (zoals de planeet Venus laatst voor de zon schoof). Tot nu toe was zo’n planeetovergang een cruciale voorwaarde om de atmosfeer van een hete Jupiter te onderzoeken: wanneer een planeet voor zijn ster langs trekt, laat zijn atmosfeer een soort vingerafdruk achter in het sterlicht. Omdat in dit geval het licht van de ster van ons uit gezien niet door de planeetatmosfeer gaat, betekende dit dat de atmosfeer van Tau Boötis b niet kon worden onderzocht. Maar nu, na vijftien jaar te hebben geprobeerd om de zwakke gloed van hete Jupiters te bestuderen, zijn astronomen er eindelijk in geslaagd om de structuur van de atmosfeer van Tau Boötis b te onderzoeken en kon voor het eerst de massa van deze exoplaneet nauwkeurig worden bepaald. Hieronder een impressie van Tau Boötes b op video:

Loading player…

Het team maakte daarbij gebruik van het CRIRES-instrument van de Very Large Telescope (VLT) van de ESO-sterrenwacht op Paranal, in Chili. De astronomen combineerden infraroodwaarnemingen van hoge kwaliteit (op golflengten van ongeveer 2,3 micrometer) met een slimme nieuwe truc waarmee het zwakke signaal van de planeet aan het veel sterkere signaal van de moederster ontfutseld kon worden. Eerste auteur Matteo Brogi (Universiteit Leiden) legt uit: “Dankzij de uitstekende waarnemingen van de VLT en CRIRES hebben we het spectrum van het stelsel veel gedetailleerder kunnen onderzoeken dan voorheen mogelijk was. Slechts ongeveer 0,01% van het licht dat we zien is van de planeet afkomstig en de rest van de ster, dus dat viel niet mee.” De meeste planeten die om andere sterren draaien, zijn ontdekt door de zwaartekrachtsinvloed die zij op hun moederster uitoefenen. Dat beperkt de informatie die over hun massa’s kan worden verzameld: er kan slechts een ondergrens voor de planeetmassa worden berekend. De nieuwe techniek die nu is toegepast, biedt veel meer mogelijkheden. Door het licht van de planeet rechtstreeks waar te nemen, konden de astronomen meten onder welke hoek we tegen de planeetbaan aan kijken en op die manier nauwkeurig zijn massa vaststellen. Door na te gaan welke veranderingen de beweging van de planeet om zijn ster vertoont, heeft het team op betrouwbare wijze kunnen bepalen dat Tau Boötis b onder een hoek van 44 graden om zijn ster draait en een massa heeft die zes keer zo groot is als die van de planeet Jupiter in ons eigen zonnestelsel. In deze video zie je hoe wordt ingezoomd op Tau Böotis, de moederster.

kaart van het sterrenbeeld Boötes, met Tau Boötes, de moederster van Tau Boötes b.

“Met deze nieuwe VLT-waarnemingen is het vijftien jaar oude vraagstuk van de massa van Tau Boötis b opgelost. En de nieuwe techniek brengt ook met zich mee dat we nu de atmosferen kunnen onderzoeken van exoplaneten die niet voor hun ster langs bewegen, en hun massa’s nauwkeurig kunnen bepalen, wat voorheen niet mogelijk was”, zegt co-auteur Ignas Snellen (Sterrewacht Leiden). “Dat is een grote stap voorwaarts.” Het onderzoeksteam heeft niet alleen de gloed van de atmosfeer van Tau Boötis b gedetecteerd en de massa van de planeet bepaald, maar ook zijn atmosfeer nader kunnen analyseren. Daarbij is de daarin aanwezige hoeveelheid koolmonoxide gemeten en kon, door vergelijking van de waarnemingen met theoretische modellen, de temperatuur op verschillende hoogten in de atmosfeer worden vastgesteld. Een verrassend resultaat van dit onderzoek was dat de nieuwe waarnemingen erop wijzen dat de atmosferische temperatuur naar boven toe afneemt. Dat is precies het tegenovergestelde van de temperatuurinversie – een toename van de temperatuur met de hoogte – die bij andere hete Jupiters is ontdekt. De VLT-waarnemingen laten zien dat hogeresolutiespectroscopie met telescopen op de vaste grond een waardevol middel is voor de gedetailleerde analyse van de atmosferen van exoplaneten die geen planeetovergangen vertonen. De toekomstige detectie van andere moleculen zal astronomen in staat stellen om meer te weten te komen over de atmosferische omstandigheden op de planeet. Door deze omstandigheden te meten op momenten dat de planeet zich in verschillende punten van zijn omloopbaan bevindt, kan wellicht zelfs worden vastgesteld hoe de atmosferische omstandigheden tussen ochtend en avond veranderen. “Dit onderzoek is het bewijs van het enorme potentieel van de huidige telescopen op aarde en hun toekomstige opvolgers, zoals de E-ELT. Misschien zullen we op deze manier ooit zelfs biologische activiteit op aarde-achtige planeten kunnen aantonen”, concludeert Snellen. Bron: ESO.

Speak Your Mind

*

Deze website gebruikt Akismet om spam te verminderen. Bekijk hoe je reactie-gegevens worden verwerkt.