15 juni 2021

Astronomen brengen magnetische velden aan rand van zwart gat in M87 in beeld

De Event Horizon Telescope (EHT) samenwerking, die de allereerste foto van een zwart gat maakte, heeft vandaag een nieuwe afbeelding van het massarijke object in het centrum van het sterrenstelsel M87 gepresenteerd. Ze toont hoe dit object er in gepolariseerd licht uitziet. Het is voor het eerst dat het astronomen is gelukt om polarisatie – een kenmerk van magnetische velden – zo dicht bij de rand van een zwart gat te meten. Aan de hand van deze waarnemingen hopen astronomen te kunnen verklaren hoe het 55 miljoen lichtjaar verre sterrenstelsel in staat is om energetische jets vanuit zijn kern te ‘lanceren’.

De Event Horizon Telescope (EHT) samenwerking, die in 2019 de allereerste foto van een zwart gat presenteerde, heeft vandaag een nieuwe afbeelding van het massarijke object in het centrum van het sterrenstelsel M87 vrijgegeven. Ze toont hoe dit object er in gepolariseerd licht uitziet. Het is voor het eerst dat het astronomen is gelukt om polarisatie – een kenmerk van magnetische velden – zo dicht bij de rand van een zwart gat te meten. Deze foto toont het gepolariseerde beeld van het zwarte gat in M87. De lijnen geven de oriëntatie aan van de polarisatie, die verband houdt met het magnetische veld rond de schaduw van het zwarte gat. Credit: EHT Collaboration

‘We hebben nu nieuw cruciaal bewijs gevonden dat ons helpt begrijpen hoe magnetische velden zich rond zware gaten gedragen, en hoe de activiteit in dit zeer compacte stukje ruimte krachtige jets kan aandrijven die zich tot ver buiten het sterrenstelsel uitstrekken,’ zegt Monika Mos?cibrodzka, coördinator van de Polarimetrie-werkgroep van de EHT en hoofddocent aan de Radboud Universiteit.

Op 10 april 2019 presenteerden wetenschappers de allereerste foto van een zwart gat, waarop een heldere ringachtige structuur rond een donker centrum – de schaduw van het zwarte gat – te zien was. Sindsdien is de EHT-samenwerking dieper in de in 2017 verzamelde data van dit superzware zwarte gat in het hart van het sterrenstelsel M87 gedoken. Daarbij is ontdekt dat een aanzienlijke fractie van het licht rond dit zwarte gat gepolariseerd is.

Opnamen in gepolariseerd licht van het superzware zwarte gat in M87 en de bijbehorende jet. Credit: EHT Collaboration; ALMA (ESO/NAOJ/NRAO), Goddi et al.; VLBA (NRAO), Kravchenko et al.; J. C. Algaba, I. Martí-Vidal

‘Dit onderzoek is een belangrijke mijlpaal: de polarisatie van licht bevat informatie die meer inzicht geeft in de fysica achter de foto die we in april 2019 hebben gezien,’ aldus Iván Martí-Vidal, ook coördinator van de Polarimetrie-werkgroep van de EHT, en GenT Distinguished Researcher aan de Universiteit van Valencia, Spanje. ‘In deze nieuwe opname van gepolariseerd licht is jaren werk gaan zitten, door de complexiteit van de technieken die nodig waren om de data te verzamelen en te analyseren.’

Licht wordt gepolariseerd wanneer het door bepaalde filters gaat, zoals de glazen van een gepolariseerde zonnebril, of wanneer het wordt uitgezonden door hete gebieden in de ruimte die gemagnetiseerd zijn. Net zoals een gepolariseerde zonnebril ons beter laat zien door de weerkaatsingen en schitteringen van heldere oppervlakken te verminderen, kunnen astronomen hun zicht op de omgeving van een zwart gat verbeteren door te kijken hoe het daarvan afkomstige licht gepolariseerd is. Meer specifiek stelt polarisatie astronomen in staat om de magnetische veldlijnen langs de rand van het zwarte gat in kaart te brengen.

Messier 87 in het sterrenbeeld Maagd. Credit: ESO, IAU and Sky & Telescope.

‘De nu gepubliceerde polarisatie-afbeeldingen zijn cruciaal voor ons begrip van hoe het magnetische veld het zwarte gat in staat stelt om materie ‘op te slokken’ en krachtige jets te lanceren,’ zegt Andrew Chael, lid van de EHT-samenwerking en NASA Hubble Fellow aan het Princeton Center for Theoretical Science en het Princeton Gravity Initiative in de VS.

De heldere jets van energie en materie die aan de kern van M87 ontspringen, en zich tot op minstens 5000 lichtjaar van zijn kern uitstrekken, behoren tot de meest geheimzinnige en energetische kenmerken van het sterrenstelsel. De meeste materie die zich dicht bij de rand van een zwart gat bevindt, valt naar binnen. Maar sommige van de deeltjes in de omgeving weten op het nippertje te ontsnappen en worden in de vorm van jets ver de ruimte in geblazen.

De cruciale bijdrage van ALMA en APEX aan de EHT. Credit: EHT Collaboration

Om dit proces beter te begrijpen, konden astronomen vertrouwen op verschillende modellen die beschrijven hoe materie zich in de omgeving van het zwarte gat gedraagt. Maar ze weten nog steeds niet precies hoe jets groter dan het sterrenstelsel zelf kunnen worden gelanceerd vanuit een centraal gebied dat kleiner is dan ons zonnestelsel, en ook niet hoe materie precies in het zwarte gat valt. Met de nieuwe EHT-opname van het zwarte gat en diens schaduw in gepolariseerd licht zijn astronomen er voor het eerst in geslaagd om het gebied vlak buiten het zwarte gat te bekijken, waar deze interactie tussen naar binnen stromende en naar buiten geblazen materie zich afspeelt.

De waarnemingen verschaffen nieuwe informatie over de structuur van de magnetische velden net buiten het zwarte gat. Het team heeft ontdekt dat alleen theoretische modellen waarin een belangrijke rol is weggelegd voor sterk gemagnetiseerd gas kunnen verklaren wat zij aan de waarnemingshorizon zien gebeuren.

Artist’s impression van het zwarte gat in het hart van M87. Credit: ESO/M. Kornmesser

‘De waarnemingen suggereren dat de magnetische velden aan de rand van het zwarte gat sterk genoeg zijn om het hete gas terug te duwen en het helpt om de zwaartekracht te weerstaan. Alleen gas dat door het veld heen glipt kan naar de waarnemingshorizon toe spiralen,’ verklaart Jason Dexter, hoofddocent aan de Universiteit van Colorado te Boulder (VS) en coördinator van de Theorie-werkgroep van de EHT.

Om het hart van het sterrenstelsel M87 waar te nemen, heeft de EHT-samenwerkiing acht telescopen verspreid over de wereld met elkaar verbonden – waaronder de in het noorden van Chili gestationeerde Atacama Large Millimeter/submillimeter Array (ALMA) en het Atacama Pathfinder EXperiment (APEX), waarin de Europese Zuidelijke Sterrenwacht (ESO) partner is – om zo een virtuele telescoop ter grootte van de aarde te creëren: de EHT. Met de indrukwekkende resolutie die met de EHT wordt verkregen, zou je de lengte kunnen meten van een creditcard die op het oppervlak van de maan ligt.

Messier 87, vastgelegd door ESO’s Very Large Telescope. Credit: ESO.

‘Met ALMA en APEX, die door hun zuidelijke locatie de beeldkwaliteit verbeteren door het EHT-netwerk over een groter geografisch gebied uit te spreiden, konden Europese wetenschappers een centrale rol spelen in het onderzoek’, zegt Francisca Kemper, Europees ALMA-programmawetenschapper bij ESO. ‘Met zijn 66 antennes domineert ALMA de algehele signaal-verzameling in gepolariseerd licht, terwijl APEX essentieel was voor de kalibratie van de opname.’

‘De ALMA-data waren ook cruciaal voor het kalibreren, in beeld brengen en interpreteren van de EHT-waarnemingen, door stringente restricties op te leggen aan de theoretische modellen die verklaren hoe materie zich in de omgeving van de waarnemingshorizon van het zwarte gat gedraagt,’ voegt Ciriaco Goddi, wetenschapper aan de Radboud Universiteit en de Sterrewacht Leiden, daaraan toe. Goddi gaf leiding aan een begeleidend onderzoek dat volledig op ALMA-gegevens was gebaseerd.

De EHT-opzet stelde het team in staat om de schaduw van het zwart gat en de ring van licht daaromheen rechtstreeks waar te nemen, terwijl de nieuwe opname van gepolariseerd licht duidelijk laat zien dat de ring gemagnetiseerd is. De resultaten worden vandaag in twee afzonderlijke artikelen in de Astrophysical Journal Letters door de EHT-samenwerking gepubliceerd. Bij het onderzoek waren meer dan driehonderd wetenschappers van tal van organisaties en universiteiten van over de hele wereld betrokken.

‘Dankzij technologische upgrades van het netwerk en de toevoeging van nieuwe telescopen boekt de EHT snelle vooruitgang. We verwachten dat toekomstige EHT-waarnemingen de magnetische veldstructuur rond het zwarte gat nauwkeuriger zullen tonen en ons meer zullen vertellen over de fysica van het hete gas in dit gebied’, concludeert Jongho Park, lid van de EHT-samenwerking en East Asian Core Observatories Association Fellow aan de Academia Sinica, het Instituut voor Astronomie en Astrofysica in Taipei.

Publicaties:
–       First M87 Event Horizon Telescope Results VII: polarization of the ring, The Astrophysical Journal, DOI: https://doi.org/10.3847/2041-8213/abee6a
–       First M87 Event Horizon Telescope Results VIII: Magnetic Field Structure Near The Event Horizon, The Astrophysical Journal. DOI: https://doi.org/10.3847/2041-8213/abe4de
–       Polarimetric properties of Event Horizon Telescope targets from ALMA, The Astrophysical Journal. DOI: https://doi.org/10.3847/2041-8213/abee6a

Bron: ESO.

Speak Your Mind

*

Deze website gebruikt Akismet om spam te verminderen. Bekijk hoe je reactie-gegevens worden verwerkt.