Donkere materie: ‘echt spul’ of onbegrepen zwaartekracht? 

Er heerst al jarenlang een tweestrijd onder astronomen en natuurkundigen. Is de mysterieuze donkere materie die diep in het heelal wordt waargenomen nu écht, of zien we de gevolgen van subtiele afwijkingen van de ons bekende zwaartekrachtswetten? In 2016 kwam de Nederlandse natuurkundige Erik Verlinde met een theorie van de tweede soort: emergente zwaartekracht. Nieuw onderzoek, deze week gepubliceerd in het tijdschrift Astronomy & Astrophysics, verlegt de grens van donkerematerie-waarnemingen tot in de onbekende buitenregionen van sterrenstelsels, en legt daarmee verschillende donkerematerie-modellen en alternatieve zwaartekrachttheorieën langs de meetlat.

In het midden het elliptische sterrenstelsel NGC5982, rechts daarvan het spiraalvormige sterrenstelsel NGC5985. Deze twee soorten sterrenstelsels blijken zich heel verschillend te gedragen als het gaat om de extra zwaartekracht – en dus mogelijk de donkere materie – in de buitengebieden van de stelsels. Foto: Bart Delsaert (www.delsaert.com).

Metingen van de zwaartekracht van 259.000 geïsoleerde sterrenstelsels tonen een bijzonder nauw verband aan tussen de bijdrage van donkere materie en die van gewone materie, zoals voorspeld in de emergente-zwaartekrachttheorie van Verlinde en een alternatieve theorie met de naam Modified Newtonian Dynamics. De resultaten lijken echter ook overeen te komen met een computersimulatie van het heelal, die uitgaat van donkere materie als ‘echt spul’.

Het nieuwe onderzoek werd uitgevoerd door een internationale groep sterrenkundigen, onder leiding van Margot Brouwer (RUG en UvA). Verdere belangrijke rollen waren weggelegd voor Kyle Oman (RUG en Durham University) en voor Edwin Valentijn (RUG). Brouwer voerde in 2016 al een eerste test van de ideeën van Verlinde uit; dit keer sloot Verlinde zelf zich ook bij het onderzoeksteam aan.

Materie of zwaartekracht?

Donkere materie is nog nooit direct waargenomen – vandaar ook de naam. Wat astronomen aan de hemel zien zijn de gevolgen van mogelijk aanwezige materie: het afbuigen van sterlicht, het sneller dan verwacht bewegen van sterren, en zelfs effecten die de beweging van hele sterrenstelsels beïnvloeden. Dat al die effecten komen door extra zwaartekracht staat buiten kijf, maar de vraag is: zien we nu de gevolgen van daadwerkelijk aanwezige onzichtbare materie, of zijn het de wetten van de zwaartekracht zélf die we nog niet goed begrijpen?

Om die vraag te kunnen beantwoorden gebruikt het nieuwe onderzoek eenzelfde methode als bij de eerste test in 2016. Brouwer en collega’s maken gebruik van een al tien jaar lopend programma van digitale fotografische metingen met ESO’s VLT Survey Telescope in Chili: de KiloDegree Survey (KiDS). Daarin wordt gemeten hoe sterlicht van ver weg gelegen sterrenstelsels onderweg door de zwaartekracht wordt afgebogen voordat het onze telescopen bereikt. Waar de metingen van zulke ‘lenseffecten’ in 2016 nog een gebied van zo’n 180 vierkante graden aan de hemel bestreken, is de reikwijdte inmiddels uitgebreid tot 1000 vierkante graden, waarmee nu rondom een miljoen verschillende sterrenstelsels de zwaartekrachtverdeling gemeten kan worden.

Vergelijkend warenonderzoek

Brouwer en collega’s selecteerden meer dan 259.000 geïsoleerde sterrenstelsels, waarvan ze de zogeheten ‘Radial Acceleration Relation’ (RAR) konden meten. De RAR vergelijkt de hoeveelheid zwaartekracht die men zou verwachten op grond van de zichtbare materie in een sterrenstelsel, met de hoeveelheid zwaartekracht die daadwerkelijk aanwezig is – oftewel: er wordt bepaald hoeveel ‘extra’ zwaartekracht er bestaat, bovenop die van de normale materie. Tot nu toe was die extra zwaartekracht alleen bepaald tot aan de buitenranden van sterrenstelsels door te kijken naar de beweging van sterren, en tot vijf keer daar voorbij met behulp van metingen van de draaisnelheid van koud gas. Met behulp van de lenseffecten van zwaartekracht slaagden deze onderzoekers er nu in om de RAR voor een honderd keer kleinere zwaartekracht te meten dan voorheen, en daarmee door te dringen tot in de veel verdere buitengebieden van sterrenstelsels.

Daarmee kon de extra zwaartekracht extreem goed gemeten worden – maar is die zwaartekracht nu een gevolg van onzichtbare donkere materie, of zijn het de zwaartekrachtwetten zelf die we moeten aanpassen? Auteur Kyle Oman geeft aan dat de aanname van ‘echt spul’ in elk geval deels lijkt te werken: “We vergelijken de metingen in ons onderzoek met vier verschillende modellen: twee waarin het bestaan van donkerematerie-deeltjes wordt aangenomen waarmee het heelal in computers wordt gesimuleerd, en twee waarin de zwaartekrachtwetten worden aangepast – het emergente-zwaartekrachtmodel van Erik Verlinde en de ‘Modified Newtonian Dynamics’, MOND.

Een van de twee donkerematerie-simulaties, MICE, doet voorspellingen die uitstekend in overeenstemming zijn met onze metingen. We waren verrast dat de voorspellingen van de andere simulatie, BAHAMAS, heel anders waren. Dat er überhaupt een verschil was kwam al als een verrassing, omdat de twee modellen veel overeenkomsten hebben. Maar bovendien hadden we verwacht dat, áls er al een verschil was, BAHAMAS het juist beter zou doen. BAHAMAS is een gedetailleerder model dan MICE, dat nauwkeuriger ons huidige begrip van hoe sterrenstelsels zich vormen in een universum met donkere materie benadert. Toch presteert juist MICE veel beter als we de uitkomsten met de metingen vergelijken. In de toekomst willen we aan de hand van wat we nu gevonden hebben nader onderzoeken wat de reden is voor het verschil tussen de simulaties.”

Een grafiek van de Radial Acceleration Relation (RAR). Op de achtergrond een foto van het elliptische sterrenstelsel M87, om de afstand tot de kern van het sterrenstelsel aan te geven. De grafiek toont hoe de meetwaarden lopen van hoge zwaartekrachtsversnelling in het centrum van het sterrenstelsel, naar lage zwaartekrachtsversnelling ver buiten het sterrenstelsel. Afbeelding: Chris Mihos (Case Western Reserve University) / ESO.

Jonge en oude sterrenstelsels

Daarmee lijkt dus ten minste één donkerematerie-verklaring wél te passen. Ook de alternatieve zwaartekrachtmodellen voorspellen echter de gemeten RAR. Gelijk spel dus, lijkt het, maar hoe weten we nu welk model écht klopt? Margot Brouwer, die het onderzoek leidde, vervolgt: “Na onze eerste tests concludeerden we dat de twee alternatieve zwaartekrachttheorieën en MICE redelijk overeenkwamen met onze waarnemingen. Het spannendste kwam echter nog: omdat we meer dan 259.000 sterrenstelsels tot onze beschikking hadden, konden we ze ook opsplitsen in verschillende types: relatief jonge blauwe spiraalvormige stelsels tegenover relatief oude rode elliptische stelsels.” Die twee typen sterrenstelsels hebben een heel verschillende vormingsgeschiedenis: rode elliptische stelsels ontstaan uit interacties tussen verschillende sterrenstelsels, bijvoorbeeld als twee blauwe spiralen langs elkaar scheren of zelfs samensmelten. Men verwacht binnen de deeltjestheorie van donkere materie dat de verhouding tussen normale en donkere materie in die twee typen sterrenstelsels kan verschillen. Modellen zoals die van Verlinde en MOND gebruiken daarentegen geen donkerematerie-deeltjes, en voorspellen daarom een vaste relatie tussen de verwachte en de gemeten zwaartekracht – onafhankelijk van het type sterrenstelsel. Brouwer: “We ontdekten dat de RAR voor de twee typen sterrenstelsels significant verschilde. Dat zou dus een sterke aanwijzing voor donkere materie als deeltje kunnen zijn.”

Maar er zit nog een addertje onder het gras: gas. Veel sterrenstelsels worden waarschijnlijk omhuld door een diffuse wolk heet gas, die heel moeilijk waar te nemen is. Als er rondom de jonge blauwe spiraalstelsels bijna geen gas zit, maar rondom de oude rode elliptische stelsels juist veel (met grofweg evenveel massa als de sterren), dan zou dat het verschil tussen de RAR van de twee typen sterrenstelsels kunnen verklaren. Om een definitieve uitspraak te doen over het gemeten verschil moet de hoeveelheid diffuus gas dus óók nauwkeurig worden gemeten – en laat dat nu net onmogelijk zijn met de KiDS-telescopen. Er zijn wel metingen gedaan voor een kleine groep van zo’n honderd sterrenstelsels, waarbij inderdaad meer gas gevonden werd rond elliptische sterrenstelsels, maar het is nog de vraag hoe representatief die metingen zijn voor de 259.000 stelsels die in het huidige onderzoek werden bestudeerd.

Donkere materie op voorsprong?

Als blijkt dat extra gas het verschil tussen de twee typen stelsels níét kan verklaren, zijn de resultaten van de metingen met donkerematerie-deeltjes makkelijker voorstelbaar dan aan de hand van alternatieve zwaartekrachtsmodellen. Toch is zelfs dan de wedstrijd nog niet gespeeld. Hoewel het verschil lastig te verklaren is binnen MOND, ziet Erik Verlinde nog wel een uitweg voor zijn eigen theorie. Verlinde: “Mijn huidige model is alleen toepasbaar op statische, geïsoleerde, bolvormige sterrenstelsels, en kan daarmee inderdaad de verschillende typen sterrenstelsels nog niet goed van elkaar onderscheiden. Ik zie deze resultaten dan ook als een uitdaging en inspiratie om aan de slag te gaan met een asymmetrische, dynamische versie van mijn theorie, waarin ook meegenomen kan worden dat sterrenstelsels met een verschillende vorm en vormingsgeschiedenis een verschillende hoeveelheid ‘schijnbare donkere materie’ hebben.”

Zelfs met de nieuwe metingen is de strijd tussen donkere materie als deeltje en alternatieve zwaartekracht dus nog niet beslecht. Toch betekenen de resultaten een enorme stap voorwaarts: als het gemeten zwaartekrachtsverschil tussen de diverse soorten sterrenstelsels klopt, dan zal het juiste model, van welke soort ook, in elk geval nauwkeurig genoeg moeten zijn om dit te verklaren. Veel bestaande modellen zouden dan al direct de prullenbak in kunnen, en dat dunt het landschap van mogelijke verklaringen sterk uit. Daarbij vraagt dit onderzoek om systematische metingen van het hete gas rond sterrenstelsels. Edwin Valentijn formuleert het als volgt: “We hebben als waarnemers het punt bereikt waar we de hoeveelheid extra zwaartekracht rondom sterrenstelsels nauwkeuriger kunnen meten dan hun hoeveelheid zichtbare materie. De tegenstrijdige conclusie is dat we de aanwezigheid van normale materie in de vorm van heet gas rond sterrenstelsels nader zullen moeten onderzoeken, voordat we met toekomstige telescopen als Euclid het mysterie van donkere materie definitief op kunnen lossen.” Bron: Astronomie.nl

Twee kosmologische spanningen – de Hubble en Sigma-Acht spanning- hoe los je die op?

Kosmologische spanningen teisteren het Lambda-CDM model. Credit: ESO/T. Preibisch.

Het gangbare heelalmodel, het Lambda (Λ)-CDM model, ook wel het kosmologische concordantie model genoemd, heeft het lastig. Al een jaar of vijf is er de hardnekkige Hubble-spanning, het debat tussen sterrenkundigen over de vraag hoe snel het heelal uitdijt. En sinds een maand of vijf is daar ook de zogeheten Sigma-acht (σ8)-spanning, het debat over de vraag hoe sterk materie aan elkaar verbonden is, hoe homogeen het heelal is (hoe meer materie aan elkaar ‘kleeft’ des te lager de homogeniteit). De Sigma-acht spanning [1]σ-8 is één van de afgeleide kosmologische parameters. Officieel staat σ8 voor ‘The present root-mean-square matter fluctuation averaged over a sphere of radius 8 h – 1  … Continue reading kreeg een maand geleden een enorme boost toen de resultaten van de KIDS-1000 survey bekend werden gemaakt. Volgens die metingen zou het heelal 10% homogener zijn dan wat het Lambda-CDM model voorspelt.

Het Λ-CDM model. Credit: Design Alex Mittelmann, Coldcreation

Afijn, twee kosmologische spanningen, die beiden waarschijnlijk niet zijn toe te schrijven aan instrumentele fouten, maar die wijzen op mechanismen, die niet in het Lambda-CDM model zijn opgenomen. Werk aan de winkel dus voor de theoretici om nieuwe mechanismen te bedenken die nog niet in het gangbare model zitten. Maar dan komt gelijk het grote probleem om de hoek: mogelijke oplossingen van de ene spanning staan oplossingen van de andere spanning in de weg. Zo zou je de Hubble-spanning op kunnen lossen door de introductie van ‘donkere straling’ in het vroege heelal [2]Het is één van de vele oplossingen die zijn bedacht, zie dit vakartikel bijvoorbeeld met een overzicht ervan., zodat die zorgt voor een extra versnelling van het heelal, nodig om het verschil tussen het ‘langzaam’ uitdijende vroege heelal (zoals waargenomen door de Planck sonde) en het ‘snelle’ uitdijende tegenwoordige heelal (zoals waargenomen door de Hubble ruimtetelescoop) te overbruggen. Maar die introductie van een extra term in de modellen levert noodzakelijkerwijs ook meer materie op en dat zou zorgen voor meer aaneen klitten van materie, minder homogeniteit. En da’s nou juist wat KIDS-1000 niet heeft gezien, minder homogeniteit.

Door te kijken naar zwaartekrachtlenzen krijgen sterrenkundigen een beeld van de homogeniteit van het heelal. Credit: Agentur der RUBHubble

Je kunt dus stoeien met de hoeveelheid donkere materie, donkere energie, met de introductie van nieuwe exotische vormen, zoals donkere straling of vroege donkere energie, maar de balans tussen al die termen moet wel leiden tot oplossing van beide kosmologische spanningen en de vraag is of dat gaat lukken. De sterrenkundigen kijken nu al reikhalzend uit naar de nieuwe resultaten van twee surveys, die nog verder gaan dan de KIDS-1000 survey, de Dark Energy Survey (DES) in Chili en de survey van de Japanse Hyper Suprime-Cam van de Subaru telescoop in Hawaï. Bij de laatste DES-campagne is een gebied in het heelal bestudeerd dat vijf keer groter is dan wat KIDS-1000 heeft bekeken en die resultaten worden ergens komende maanden bekendgemaakt. Die resultaten zouden een bevestiging kunnen zijn van de KIDS-1000 uitkomsten, maar ze zouden ook iets anders kunnen zijn. We wachten het af… met spanning. Bron: Quanta Magazine.

References[+]

References
1 σ-8 is één van de afgeleide kosmologische parameters. Officieel staat σ8 voor ‘The present root-mean-square matter fluctuation averaged over a sphere of radius 8 h – 1 Mpc‘, jawel.
2 Het is één van de vele oplossingen die zijn bedacht, zie dit vakartikel bijvoorbeeld met een overzicht ervan.

Nieuw KiDS-resultaat: heelal 10 procent homogener dan gedacht

KiDS1000-massmap-zoom:
Een zoom-in op een deel van de KiDS-kaart, die een gebied aan de hemel weergeeft van circa 1,5 bij 1 miljard lichtjaar. Gebieden met een hoge materiedichtheid zijn weergegeven in geel, die met een lagere dichtheid in roze. Het grijze vierkantje toont de grootte van een enkele KiDS-opname. De volle maan is weergegeven voor de schaal. De KiDS-kaart bestaat uit meer dan 1000 abeeldingen.
Credit: B.Giblin, K.Kuijken en het KiDS-team.

Nieuwe resultaten van de Kilo-Degree Survey (KiDS) tonen aan dat het heelal bijna 10 procent homogener is dan het kosmologisch  standaardmodel (L-CDM) voorspelt. De nieuwe KiDS-kaart is gemaakt met de deels Nederlandse OmegaCAM op ESO’s VLT Survey Telescope op Cerro Paranal in Noord-Chili. Een internationaal team van astronomen van onder meer de Universiteit Leiden heeft het KiDS-1000-resultaat beschreven in vijf artikelen waarvan de laatste drie vrijdag online zijn verschenen. Ze zijn ingestuurd voor publicatie in het vakblad Astronomy & Astrophysics.

De nieuwe KiDS-kaart beslaat zo’n 1000 vierkante graden, wat neerkomt op 5% van de extragalactische hemel. Voor de analyse zijn 31 miljoen sterrenstelsels gebruikt. De sterrenstelsels staan tot meer dan 10 miljard lichtjaar ver. Hun licht werd uitgezonden in de tijd dat ons heelal nog maar de helft van zijn huidige leeftijd had.

KiDS gebruikt de sterrenstelsels om de verdeling van materie in het heelal in kaart te brengen. Dat gebeurt via zwakke zwaartekrachtlenzen, waarbij het licht van verre sterrenstelsels een beetje wordt afgebogen door het zwaartekrachtseffect van grote hoeveelheden materie, zoals clusters van sterrenstelsels. Dat effect wordt gebruikt om de ‘klonterigheid’ te bepalen van de verdeling van de sterrenstelsels. Het gaat hierbij om alle materie in het heelal, waarvan meer dan 90 procent bestaat uit de onzichtbare donkere materie plus onzichtbaar ijl gas.

KiDS1000-over-LeidenObservatory
De KiDS-kaart op schaal geprojecteerd op de nachtelijke hemel boven de Oude Sterrewacht Leiden. De kaart toont de oneffenheden in de materieverdeling in het heelal op basis van de gegevens van zwakke zwaartekrachtlenzen. De kleinste kenmerken beslaan zo’n 30 miljoen lichtjaar.
Credit: B.Giblin, K.Kuijken en het KiDS-team.

De zwaartekracht van de materie in het heelal zorgt voor een minder homogene verdeling; gebieden met een beetje meer massa dan gemiddeld trekken materie aan uit hun omgeving en zorgen voor meer contrast. Maar de uitdijing van het heelal gaat deze groei juist tegen. Deze beide processen worden aangestuurd door de zwaartekracht en zijn daarom van groot belang voor het testen van het kosmologisch standaardmodel (L-CDM), dat vrij nauwkeurig voorspelt hoe de dichtheidsvariaties toenemen met de leeftijd van het heelal.

De nieuwe KiDS-resultaten laten echter een discrepantie zien: het heelal is bijna 10 procent homogener dan het standaardmodel voorspelt.

De Leidse hoogleraar en KiDS-projectleider Koen Kuijken noemt het resultaat “intrigerend”. “We hebben een heel goed fysisch model van het heelal, dat de waarnemingen goed beschrijft maar wel een beroep doet op zeer opmerkelijke en mysterieuze fysica, in het bijzonder die van de donkere materie en donkere energie. Zo’n model moet je op zoveel mogelijk manieren testen, en dat is wat we aan het doen zijn.”

Mogelijk duiden de KiDS-resultaten op kleine barstjes in het standaardmodel, net zoals een andere discrepantie in de uitdijingssnelheid dat doet, de zogenoemde Hubble-constante. Kuijken: “Het is de vraag of die met een kleine aanpassing op te lossen zijn, bijvoorbeeld met een wat complexer gedrag van donkere materie dan het eenvoudige ‘cold dark matter’, dat geen noemenswaardige reacties vertoont.”

Of dit uiteindelijk tot een fundamenteel andere theorie leidt, bijvoorbeeld het vervangen van Einsteins algemene relativiteitstheorie door een nieuwe, kan Kuijken niet zeggen. “Ik hou me voor nu bewust ver van mogelijke theoretische interpretaties, en focus me op de metingen en het zo nauwkeurig mogelijk uitvoeren daarvan. Het blijft spannend.”

Over één à twee jaar verschijnt nog een laatste KiDS kaart, 30% groter dan de huidige. Daarin zullen alle KiDS-waarnemingen verwerkt zijn.

Ook twee andere projecten, een Amerikaans en een Japans, zijn met soortgelijke analyses van andere observatoria bezig. Vanaf 2022 zal het stokje worden doorgegeven aan nog krachtigere telescopen: de Rubin-telescoop die meer dan 60 maal zo krachtig zal zijn als de VST, en de Euclid-satelliet die van buiten de atmosfeer scherpere beelden zal maken dan vanaf de grond mogelijk is. Veel van de KiDS-teamleden zijn ook bij deze projecten betrokken. Bron: Astronomie.nl.

Massabepaling heelal levert een nieuw probleem op: de Sigma-Acht Spanning

credit: NASA/JPL/STScI Hubble Deep Field Team

Hoe zwaar is het heelal? Die vraag staat centraal in een onderzoek dat de ‘Kilo-Degree Survey‘ (KiDS) wordt genoemd. Samen met nog een ander onderzoek – de ‘VISTA Kilo-Degree Infrared Galaxy Survey‘ (VIKING) – hebben sterrenkundigen die simpele vraag proberen te beantwoorden. OK, eigenlijk mag je de vraag zo niet stellen, maar moet je ’t hebben over de massa, hoeveel massa heeft het heelal. Al meer dan honderd jaar proberen sterrenkundigen de massa van ’t heelal te meten en da’s best lastig, zeker als je weet dat het grootste deel onzichtbaar is, bestaat uit donkere materie. Maar daarvan kan je toch weten waar het zit en in welke hoeveelheden, want het heeft ook zwaartekrachtsinvloed en die is meetbaar met behulp van zwaartekrachtslenzen. En je kan het ook meten door naar de kosmische microgolf-achtergrondstraling (Engels: CMB) te kijken, de restant-straling van de hete oerknal, waarmee 13,8 miljard jaar geleden het heelal ontstond. Maar wat blijkt nu – en ik denk dat je ‘m al voelt aankomen: de resultaten tussen deze twee methodes geven verschillende waarden te zien!

Credit: H. Hildebrandt et al.

Bij de metingen draait het om de parameter genaamd sigma-acht, σ-8, die niet alleen de dichtheid van de materie in het heelal aangeeft, maar ook de mate waarin materie aan elkaar klontert [1]Ik had σ-8 ook staan in mijn blog over de kosmologische parameters. Het is één van de afgeleide parameters.. Na waarnemingen met de twee onderzoeksmethodes aan 15 miljoen sterrenstelsels verspreid over een gebied van 350 vierkante graad aan de hemel komen de onderzoekers uit op σ-8=0,74 (de groene lijn hierboven). Maar wat zeggen de gegevens van de CMB, verzameld met de Europese planck-satelliet? Dat σ-8 0,81 is (het kleine rode gebiedje)! Er is een kans van slechts 1% dat het verschil tussen die twee waardes statistische ruis is.

Credit: Design Alex Mittelmann, Coldcreation

En dat lijkt erg veel op een andere spanning, waar de sterrenkundigen al meer dan vijf jaar mee worstelen: de Hubble-spanning, die gaat over de vraag hoe snel het heelal uitdijt. En net als bij die voortgaande discussie gaat het feitelijk om de vraag of er iets mis is met één van de twee gebruikte methodes óf dat er mogelijk sprake is van Nieuwe Natuurkunde, da’s natuurkunde die verder gaat dan het Standaard Model van de elementaire deeltjes en de natuurkrachten daartussen. De onderzoekers denken dat het laatste wel eens het geval zou kunnen zijn. Mogelijk is ook het vigerende kosmologische model, da’s het Lambda-CDM model, onjuist. Dat model gaat uit van een constante hoeveelheid donkere energie, maar het zou volgens Hildebrandt et al kunnen zijn dat die hoeveelheid langzaam varieert. Het boeiende is dat de twee spanningen, de Hubble-spanning en de σ-8 spanning, verband houden met elkaar: de vraag hoe snel het heelal uitdijt hangt namelijk sterk af van de vraag hoeveel massa dat heelal heeft (en daarmee hoeveel zwaartekracht die uitoefent). Spannend wat de oplossing gaat zijn!

Hier het vakartikel van H.Hildebrandt en z’n collega’s over de metingen aan Sigma-8, verschenen in Astronomy & Astrophysics 633 (2020): A69. Bron: Koberlein + Scientific American.

References[+]

References
1 Ik had σ-8 ook staan in mijn blog over de kosmologische parameters. Het is één van de afgeleide parameters.