Astronomen zien schijf rond jonge super-Jupiter waar wellicht manen vormen

Oude artistieke weergave van GQ Lupi B (linksvoor) en de hoofdster GQ Lupi (rechts). Ten tijde van deze tekening, in 2010, was de stofschijf rond GQ Lupi B nog niet ontdekt. (c) Devon1980 [CC BY-SA 3.0 via Wikimedia]

Een internationaal team van sterrenkundigen onder Leidse leiding heeft voor het eerst een stofschijf in kaart gebracht rond een jonge super-Jupiter, een hemellichaam op het grensgebied tussen een reuzenplaneet en bruine dwerg. Ze keken met behulp van zogeheten directe waarnemingen bij mid-infrarode golflengtes. Ze detecteerden emissie van de schijf en speculeren dat er misschien manen zijn gevormd. De onderzoekers publiceren hun bevindingen binnenkort in het vakblad The Astronomical Journal.

Sterrenkundigen vermoeden al langer dat jonge gasreuzen en bruine dwergen een stofschijf om zich heen hebben draaien waarin manen kunnen ontstaan, vergelijkbaar met de vorming van planeten in een schijf rond een jonge ster. Zo is er bijvoorbeeld bewijs voor een gigantisch ringsysteem dat is ontdekt in de helderheidsvariaties van een ster toen de ringen er voorlangs bewogen. Nu hebben onderzoekers voor het eerst de warmtestraling van een schijf van gas en stof rond een zware super-Jupiter gedetailleerd bekeken.

500 lichtjaar van de aarde
Het gaat om de reuzenplaneet of bruine dwerg genaamd GQ Lupi B. Het object bevindt zich in het zuidelijke sterrenbeeld Wolf (Lupus) op ongeveer 500 lichtjaar van de aarde. GQ Lupi B is veel zwaarder dan Jupiter en heeft een baan die meer dan 20 keer wijder rond de hoofdster ligt dan Jupiter rond onze zon.

De ontstaansgeschiedenis van dit soort objecten is een mysterie. Het is niet duidelijk of GQ Lupi B via een planeetachtige of sterachtige route is gevormd. GQ Lupi B werd in 2004 ontdekt toen er van de ster GQ Lupi een foto met hoog contrast werd gemaakt. Sindsdien onderzoeken sterrenkundigen van over de hele wereld de atmosfeer en baanbeweging van deze super-Jupiter.

Very Large Telescope
Voor het recente onderzoek gebruikten de astronomen de instrumenten NACO en MUSE. Die zijn gekoppeld aan de Very Large Telescope van de Europese Zuidelijke Sterrenwacht in Chili. Met infraroodcamera NACO zagen de astronomen dat er infraroodstraling van de stofschijf afkomt. Daaruit leidden ze af dat de schijf een stuk koeler is dan de hete atmosfeer van GQ Lupi B. De onderzoekers denken dat de lage temperatuur duidt op een centrale leegte in de schijf. Ze vermoeden dat daar wellicht het stof is weggeveegd doordat er manen zijn gevormd. Maar het zou ook kunnen dat de schijf beïnvloed wordt door een magneetveld van GQ Lupi B.

Met MUSE, een enorm stabiele spectrograaf die werkt in het visuele deel van het spectrum, hebben de onderzoekers zogeheten H-alfastraling gemeten. Dat duidt erop dat GQ Lupi B nog aan het groeien is dankzij de aanvoer van gas uit zijn eigen schijf en mogelijk ook uit de schijf van de ster waar deze super-Jupiter omheen beweegt.

In de toekomst hopen de onderzoekers de schijf van GQ Lupi B in meer detail te bestuderen. “De James Webb-ruimtetelescoop die binnenkort gelanceerd wordt biedt interessante mogelijkheden.” zegt onderzoeksleider Tomas Stolker (Universiteit Leiden). “Webb kan spectra nemen bij mid-infrarood golflengtes. Dat is vanaf de aarde niet goed mogelijk. Op die manier zouden we veel meer kunnen leren over de fysische en chemische processen in de schijf van GQ Lupi B die wellicht de vorming van manen mogelijk maken.”

Gasreus of bruine dwerg?
Met de ontdekking van nieuwe exoplaneten is het niet altijd duidelijk of het om een planeet of bruine dwerg gaat. Dit is met name lastig te bepalen bij direct waargenomen objecten zoals GQ Lupi B omdat hun massa’s vaak onzeker zijn. Vandaar dat onderzoekers vaak een slag om de arm houden en het in één adem hebben over ‘een reuzenplaneet of bruine dwerg’. En vandaar dat de B in GQ Lupi B soms met een hoofdletter (want een bruine dwerg) en soms met een kleine letter (want een planeet) wordt geschreven.

Wetenschappelijk artikel

Characterizing the protolunar disk of the accreting companion GQ Lupi B. Door: Tomas Stolker, Sebastiaan Y. Haffert, Aurora Y. Kesseli, Rob G. van Holstein, Yuhiko Aoyama, Jarle Brinchmann, Gabriele Cugno, Julien H. Girard, Gabriel-Dominique Marleau, Michael R. Meyer, Julien Milli, Sascha P. Quanz, Ignas A.G. Snellen & Kamen O. Todorov. Geaccepteerd voor publicatie in The Astronomical Journal. Gratis preprint: https://arxiv.org/abs/2110.04307

Bron: Astronomie.nl.

Deel van de ‘ontbrekende materie’ blijkt te zitten in galactische winden

Credit: Johannes Zabl

Over de ontbrekende materie hebben we het hier vaker gehad. Nee, het gaat dan niet om donkere materie die we niet direct kunnen zien, maar om doodgewone materie, die bestaat uit wat men ‘baryonen’ noemt, waarvan de bekendste voorbeelden de protonen en neutronen zijn. Uit waarnemingen en berekeningen blijkt dat maar liefst 80% van de baryonische materie vermist wordt, Afgelopen jaren is al een deel ervan gevonden, o.a. in de vorm van waterstofsneeuw en in het kosmische web. En nu is weer een deel van de ontbrekende materie gevonden en wel in de zogeheten galactische winden. Een internationaal team van sterrenkundigen heeft met behulp van het MUSE [1]MUSE staat voor het Multi Unit Spectroscopic Explorer instrument, een 3D spectrograaf. verbonden aan de Very Large Telescopes (VLT) van de ESO in Chili gekeken naar het sterrenstelsel genaamd Gal 1. Dat stelsel staat vlakbij een quasar, die ‘m als ware het een vuurtoren fel verlicht, zodat alles wat er in en om Gal 1 gebeurt goed te zien is. Dankzij die exta belichting was men in staat om met MUSE goed de interactie te volgen tussen het stelsel Gal 1 en z’n directe omgeving, waar zich een grote intergalactische wolk van gas en stof bevindt. In het sterrenstelsels vinden supernovae plaats en die zorgen er voor dat er materie vanuit het sterrenstelsel naar buiten stroomt in de vorm van galactische winden. Die voeden op hun beurt de wolken buiten het sterrenstelsel. De wolk bij Gal 1 bleek magnesium uit te zenden én te absorberen en daar kon men een gedetailleerde kaart van maken (hierboven, de middelste foto in blauw). Uit het onderzoek komt naar voren dat maar liefst 80 tot 90% van de gewone, baryonische materie zich bevindt in intergalactische wolken zoals die bij Gal 1. De meeste baryonische materie zit dus buiten de sterrenstelsels, hetgeen je niet verwacht. Het gaat dan ook om zeer lichtzwakke materie, die alleen door foefjes van de natuur, zoals de verlichting door een nabije quasar, kan worden gedetecteerd. Hier is het vakartikel over het onderzoek aan Gal 1, verschenen in de Monthly Notices of the Royal Astronomical Society. Bron: Science Daily.

References[+]

References
1 MUSE staat voor het Multi Unit Spectroscopic Explorer instrument, een 3D spectrograaf.

ESO maakt beste opnamen tot nu toe van vreemde ‘hondenkluif’-planetoïde

Planetoïde Kleopatra vanuit verschillende hoeken gezien. Credit: ESO/Vernazza, Marchis et al./MISTRAL algorithm (ONERA/CNRS).

Met behulp van de Very Large Telescope (VLT) van de Europese Zuidelijke Sterrenwacht (ESO) heeft een team van astronomen nieuwe opnamen gemaakt van de planetoïde Kleopatra. Dat heeft de meest detailrijke foto’s tot nu toe opgeleverd van deze merkwaardig gevormde planetoïde, die op een hondenkluif lijkt. Het nieuwe onderzoek levert aanwijzingen op over hoe deze planetoïde, en de twee manen die eromheen draaien, zijn ontstaan.

‘Kleopatra is echt een uniek object binnen ons zonnestelsel,’ zegt Franck Marchis. Hij had de leiding had over het onderzoek van de planetoïde en haar manen, waarvan de resultaten vandaag in Astronomy & Astrophysics (zie dit en dit artikel) worden gepubliceerd. Marchis, astronoom aan het SETI Institute in Mountain View, VS en aan het Laboratoire d’Astrophysique de Marseille, Frankrijk: ‘De wetenschap boekt veel vooruitgang dankzij onderzoek van vreemde buitenbeentjes zoals Kleopatra. Dankzij dit complexe meervoudige planetoïdenstelsel kunnen we meer te weten komen over ons zonnestelsel.’

Zo groot is Kleopatra in vergelijking met het noorden van Italië. Credit: ESO/M. Kornmesser/Marchis et al.

Kleopatra draait in de planetoïdengordel tussen de planeten Mars en Jupiter om de zon. Astronomen hebben haar de bijnaam ‘hondenkluif’-planetoïde gegeven nadat radarwaarnemingen ongeveer twintig jaar geleden lieten zien dat zij uit twee lobben bestaat die door een dikke ‘hals’ met elkaar verbonden zijn. In 2008 ontdekten Marchis en zijn collega’s dat om Kleopatra twee manen cirkelen, die AlexHelios en CleoSelene heten, naar de kinderen van de beroemde Egyptische koningin.

Om meer over Kleopatra te weten te komen, gebruikten Marchis en zijn team snapshots van de planetoïde die tussen 2017 en 2019 op verschillende momenten zijn genomen met het Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument van ESO’s VLT. Omdat de planetoïde draaide, konden ze haar vanuit verschillende hoeken bekijken en de tot nu toe meest nauwkeurige 3D-modellen van haar vorm maken. Daarbij hebben de astronomen ontdekt dat de ene lob groter is dan de andere, en dat de lengte van de planetoïde circa 270 kilometer bedraagt – ruwweg de afstand Maastricht-Groningen.

Bij een tweede onderzoek, eveneens gepubliceerd in Astronomy & Astrophysics, heeft een team onder leiding van Miroslav Brož van de Karelsuniversiteit in Praag, Tsjechië, de SPHERE-waarnemingen gebruikt om de juiste omloopbanen van Kleopatra’s beide manen vast te stellen. Bij eerdere onderzoeken waren deze banen al ruw bepaald, maar de nieuwe waarnemingen met ESO’s VLT lieten zien dat de manen zich niet bevonden waar de oudere gegevens voorspelden dat ze zouden staan.

Bewerkte SPHERE-opname waarop de manen van Kleopatra te zien zijn. Credit: ESO/Vernazza, Marchis et al./MISTRAL algorithm (ONERA/CNRS).

‘Dit moest worden opgelost,’ zegt Brož. ‘Want als de banen van de manen fout waren, was alles fout, inclusief de massa van Kleopatra.’ Dankzij de nieuwe waarnemingen en geavanceerde modelleringen is het team erin geslaagd om nauwkeurig te beschrijven hoe Kleopatra’s zwaartekracht de bewegingen van haar manen beïnvloedt en om de complexe omloopbanen van AlexHelios en CleoSelene te bepalen. Dit stelde hen in staat om de massa van de planetoïde te berekenen. Die bleek 35% lager dan eerdere schattingen aangaven.

Door de nieuwe schattingen voor volume en massa met elkaar te combineren, konden de astronomen een nieuwe waarde voor de dichtheid van de planetoïde berekenen. Die blijkt minder dan de helft van de dichtheid van ijzer te zijn – ook lager dan gedacht [1] De opnieuw berekende dichtheid bedraagt 3,4 gram per kubieke centimeter, terwijl eerder werd aangenomen dat Kleopatra een gemiddelde dichtheid van ongeveer 4,5 gram per kubieke dichtheid zou hebben.. De lage dichtheid van Kleopatra, waarvan aangenomen wordt dat zij voor een relatief groot deel uit metalen bestaat, doet vermoeden dat zij poreus van structuur is en mogelijk niet veel meer is dan een losse samenklontering van puin. Dit betekent dat zij waarschijnlijk is ontstaan uit materiaal dat zich na een reusachtige inslag heeft opgehoopt.

Kleopatra’s puinhoopstructuur en de manier waarop zij roteert, leveren ook aanwijzingen op over hoe haar twee manen kunnen zijn gevormd. De planetoïde roteert met bijna kritische snelheid – de snelheid waarboven zij uit elkaar zou beginnen te vallen – en zelfs bij kleine inslagen kunnen steentjes van haar oppervlak ontsnappen. Marchis en zijn team denken dat AlexHelios en CleoSelene uit dit ontsnappende materiaal kunnen zijn gevormd, wat zou betekenen dat Kleopatra ook echt haar eigen manen heeft voortgebracht.

De nieuwe beelden van Kleopatra en de inzichten die ze opleveren, zijn volledig te danken aan een van de geavanceerde adaptive optics systemen waar ESO’s VLT, die in de Chileense Atacama-woestijn staat opgesteld, gebruik van maakt. Adaptieve optiek corrigeert de beeldvervormingen, veroorzaakt door de atmosfeer van de aarde, die ervoor zorgen dat objecten wazig lijken – hetzelfde effect dat sterren vanaf de aarde gezien doet twinkelen. Dankzij deze correcties kon SPHERE Kleopatra – die nooit dichterbij komt dan 200 miljoen kilometer – in beeld brengen, ondanks dat haar schijnbare grootte aan de hemel vergelijkbaar is met die van een golfbal op ongeveer veertig kilometer afstand.

ESO’s toekomstige Extremely Large Telescope (ELT), met zijn geavanceerde adaptieve optische systemen, zal ideaal zijn om opnamen te maken van verre planetoïden zoals Kleopatra. ‘Ik kan niet wachten om de ELT op Kleopatra te richten, om te zien of er nog meer manen zijn, en hun banen te verfijnen om kleine veranderingen op te sporen,’ voegt Marchis toe. Bron: ESO.

References[+]

References
1 De opnieuw berekende dichtheid bedraagt 3,4 gram per kubieke centimeter, terwijl eerder werd aangenomen dat Kleopatra een gemiddelde dichtheid van ongeveer 4,5 gram per kubieke dichtheid zou hebben.

Nieuwe ESO-waarnemingen bewijzen dat rotsachtige exoplaneet maar half zo zwaar is als Venus

Artist’s impression van het planetenstelsel L 98-59. Credit: ESO/M. Kornmesser.

Een team van astronomen is met behulp van de Very Large Telescope van de Europese Zuidelijke Sterrenwacht (ESO) in Chili meer te weten gekomen over de planeten rond de nabije ster L 98-59, die overeenkomsten vertonen met de binnenste planeten van ons zonnestelsel. Daaronder bevinden zich een planeet met half zo veel massa als Venus (de lichtste exoplaneet die ooit met de radiale-snelheidstechniek is gemeten), een oceaanwereld en een mogelijke planeet in de leefbare zone.
‘De planeet in de leefbare zone heeft wellicht een atmosfeer die leven in stand zou kunnen houden,’ zegt María Rosa Zapatero Osorio, astronoom aan het Centrum voor Astrobiologie in Madrid, Spanje, en een van de auteurs van het onderzoek, waarvan de resultaten vandaag in Astronomy & Astrophysics zijn gepubliceerd.

Vergelijking van het planetenstelsel L 98-59 met het binnenste deel van ons zonnestelsel. Credit: ESO/L. Calçada/M. Kornmesser (Acknowledgment: O. Demangeon).

De resultaten vormen een belangrijke stap in de zoektocht naar leven op planeten van aardse proporties buiten ons zonnestelsel. De detectie van tekenen van leven op een exoplaneet hangt af van de mogelijkheid om zijn atmosfeer te onderzoeken, maar de huidige telescopen zijn niet groot genoeg om de resolutie te bereiken die nodig is om dit bij kleine, rotsachtige planeten voor elkaar te krijgen. Het nu onderzochte planetenstelsel, dat naar zijn ster L 98-59 is vernoemd, is een aantrekkelijk onderzoeksobject voor toekomstige waarnemingen van de atmosferen van exoplaneten. Het draait om een ster die slechts 35 lichtjaar van ons verwijderd is, en blijkt enkele rotsachtige planeten te omvatten – planeten die zich, net als de aarde of Venus, dicht genoeg bij hun ster bevinden om warm te zijn.
Met behulp van ESO’s VLT kon het team vaststellen dat drie van de planeten wellicht water in hun inwendige of atmosfeer bevatten. De twee planeten die zich het dichtst bij de ster in het L 98-59-stelsel bevinden, zijn waarschijnlijk droog, maar kunnen kleine hoeveelheden water bevatten. De derde planeet zou voor wel dertig massaprocent uit water kunnen bestaan, wat kan betekenen dat het een oceaanwereld is.

Bovendien ontdekten de astronomen een planeet in dit stelsel waarvan het bestaan nog niet bekend was, en hebben ze aanwijzingen gevonden voor een mogelijke vijfde planeet. Deze laatste bevindt zich in een zone op de juiste afstand van de ster om vloeibaar water op zijn oppervlak te laten bestaan. ‘We hebben dus aanwijzingen gevonden voor de aanwezigheid van een aardse planeet in de leefbare zone van dit stelsel,’ verklaart Olivier Demangeon, onderzoeker aan het Instituto de Astrofísica e Ciências do Espaço van de Universiteit van Porto in Portugal en hoofdauteur van het nieuwe onderzoek.
Het onderzoek betekent een technische doorbraak, omdat de astronomen met behulp van de radiale-snelheidsmethode hebben kunnen vaststellen dat de binnenste planeet in het stelsel slechts half zo zwaar is als Venus. Daarmee is het de lichtste exoplaneet die ooit met behulp van deze techniek is ‘gewogen’. Bij deze techniek wordt de schommelbeweging van de moederster gemeten die door de geringe zwaartekrachtsaantrekking van de om haar heen draaiende planeten wordt veroorzaakt.

Bij het onderzoek van L 98-59 heeft het team gebruik gemaakt van het Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO)-instrument dat aan ESO’s VLT is gekoppeld. ‘Zonder de precisie en stabiliteit van ESPRESSO zou deze meting niet mogelijk zijn geweest,’ zegt Zapatero Osorio. ‘Dit is een stap voorwaarts in ons vermogen om de massa’s van de kleinste planeten buiten het zonnestelsel te meten.’
Astronomen hebben drie van de planeten van L 98-59 in 2019 voor het eerst gespot met NASA’s Transiting Exoplanet Survey Satellite (TESS). Deze satelliet maakt gebruik van een andere techniek – de zogeheten transitmethode – waarbij de dipjes in het licht van een ster worden gemeten die ontstaan wanneer een planeet voor die ster langstrekt. Van de planeten die zo worden opgespoord kunnen ook de afmetingen worden gemeten. Voor de bepaling van de massa’s van exoplaneten zijn echter radiale-snelheidsmetingen nodig, zoals die worden gedaan met ESPRESSO en diens voorganger, de High Accuracy Radial velocity Planet Searcher (HARPS), die gekoppeld is aan de 3,6-meter ESO-telescoop op La Silla. Het is aan deze beide instrumenten te danken dat Demangeon en zijn team de extra planeten konden opsporen en de massa’s van de drie al bekende planeten konden bepalen. ‘Om te weten waaruit een planeet bestaat, moet je minimaal zijn massa en straal kennen,’ legt Demangeon uit.
Het team hoopt het L 98-59-stelsel verder te kunnen onderzoeken met de nog te lanceren James Webb Space Telescope (JWST) van de ruimteagentschappen NASA, ESA en CSA. Ook de in aanbouw zijnde Extremely Large Telescope (ELT) van ESO, waarmee in 2027 de eerste waarnemingen zullen worden gedaan, is ideaal voor het onderzoek van deze planeten. ‘Het HIRES-instrument van de ELT kan de atmosferen van enkele planeten in het L 98-59-stelsel onderzoeken en zo de JWST vanaf de grond aanvullen,’ zegt Zapatero Osorio.
‘Dit stelsel is een voorbode van wat komen gaat,’ voegt Demangeon daaraan toe. ‘We jagen als samenleving al sinds de geboorte van de astronomie achter aardse planeten aan, en nu komen we eindelijk steeds dichter bij de detectie van een aardse planeet in de leefbare zone van zijn ster, waarvan we de atmosfeer zouden kunnen onderzoeken.’ Bron: ESO.

Onverwachte dampen van zware metalen aangetroffen in kometen in ons zonnestelsel – en daarbuiten

De detectie van zware metalen in de atmosfeer van komeet C/2016 R2. Credit: ESO/L. Calçada, SPECULOOS Team/E. Jehin, Manfroid et al.

Nieuw onderzoek door een Belgisch team, dat gebruik maakte van gegevens van de Very Large Telescope (VLT) van de Europese Zuidelijke Sterrenwacht (ESO), heeft uitgewezen dat in de atmosferen van kometen ijzer en nikkel voorkomen – zelfs in die op grote afstand van de zon. Onafhankelijk onderzoek door een Pools team, ook gebaseerd op ESO-gegevens, toont aan dat in de ijskoude interstellaire komeet 2I/Borisov eveneens nikkeldamp aanwezig is. Het is voor het eerst dat zware metalen, die doorgaans in hete omgevingen te vinden zijn, in de koude atmosferen van verre kometen zijn aangetroffen.

‘Het was een grote verrassing om ijzer- en nikkelatomen te detecteren in de atmosferen van alle ongeveer twintig kometen die we de afgelopen twee decennia hebben waargenomen, zelfs bij kometen in de koude ruimte ver van de zon’, zegt Jean Manfroid van de Universiteit van Luik, die leiding gaf aan het nieuwe onderzoek van kometen in ons zonnestelsel, waarvan de resultaten vandaag in Nature zijn gepubliceerd.

De detectie van nikkel in de atmosfeer van de interstellaire komeet 2I/Borisov. Credit: ESO/L. Calçada/O. Hainaut, P. Guzik and M. Drahus

Astronomen weten dat er in het stoffige en rotsachtige inwendige van kometen zware metalen voorkomen. Maar omdat vaste metalen gewoonlijk niet ‘sublimeren’ (gasvormig worden) bij lage temperaturen, verwachtten ze niet dat ze ze zouden aantreffen in de atmosferen van koude kometen die zich ver van de zon wagen. Nikkel- en ijzerdampen zijn nu zelfs gedetecteerd bij kometen die op meer dan 480 miljoen kilometer van de zon – meer dan drie keer de afstand aarde-zon – zijn waargenomen.

Het Belgische team heeft ontdekt dat komeet-atmosferen ongeveer gelijke hoeveelheden ijzer en nikkel bevatten. Doorgaans bevat materiaal in ons zonnestelsel, bijvoorbeeld dat in de zon en in meteorieten, ongeveer tien keer zoveel ijzer als nikkel. Dit nieuwe resultaat heeft daarom gevolgen voor ons begrip van het vroege zonnestelsel, al weet het team nog niet precies wat de implicaties ervan zijn.

‘Kometen zijn ongeveer 4,6 miljard jaar geleden gevormd in het zeer jonge zonnestelsel, en zijn sinds die tijd niet veranderd. In zekere zin zijn het astronomische fossielen’, zegt medeauteur Emmanuel Jehin, eveneens van de Universiteit van Luik.

Er was eens een blauwe komeet: komeet C/2016 R2 (PANSTARRS). Credit: ESO/SPECULOOS Team/E. Jehin.

Hoewel het Belgische team deze ‘fossiele’ objecten al bijna twintig jaar onderzoekt met ESO’s VLT, hadden ze de aanwezigheid van nikkel en ijzer in hun atmosferen tot nu toe niet opgemerkt. ‘Deze ontdekking is jarenlang aan onze aandacht ontsnapt’, aldus Jehin.

Het team maakte gebruik van gegevens van het Ultraviolet and Visual Echelle Spectrograph (UVES)-instrument van ESO’s VLT. Daarbij zijn, met behulp van een techniek die spectroscopie wordt genoemd, de atmosferen van kometen op verschillende afstanden van de zon onderzocht. Met deze techniek kunnen astronomen de chemische samenstelling van kosmische objecten analyseren: elk chemisch element laat een unieke vingerafdruk achter – een reeks lijnen – in het lichtspectrum van deze objecten.

Het Belgische team ontdekte zwakke, niet-geïdentificeerde spectraallijnen in hun UVES-gegevens, die bij nader inzien aan neutrale atomen van ijzer en nikkel konden worden toegeschreven. Een van de redenen waarom de zware elementen moeilijk aantoonbaar waren, is dat ze in zeer kleine hoeveelheden voorkomen. Het team schat dat er voor elke honderd kilogram water in de atmosfeer van een komeet slechts ongeveer één gram ijzer en ruwweg evenveel nikkel aanwezig is.

‘Gewoonlijk is er tien keer meer ijzer dan nikkel, maar in deze komeet-atmosferen troffen we beide elementen in ongeveer gelijke hoeveelheden aan. Daaruit leiden we af dat deze elementen wellicht afkomstig zijn van een speciaal soort materiaal op het oppervlak van de komeetkern, dat bij vrij lage temperatuur sublimeert en ongeveer evenveel ijzer als nikkel afgeeft’, aldus Damien Hutsemékers, die tevens lid is van het Belgische onderzoeksteam van de Universiteit van Luik.

Opname van de interstellaire komeet 2I/Borisov, vastgelegd met de VLT. Credit: ESO/O. Hainaut.

Hoewel het team nog niet zeker weet welk materiaal dit zou kunnen zijn, zullen nieuwe instrumenten, zoals de Mid-infrared ELT Imager and Spectrograph (METIS) van ESO’s toekomstige Extremely Large Telescope (ELT), onderzoekers wellicht in staat stellen om de bron van de ijzer- en nikkelatomen in de atmosferen van deze kometen op te sporen.

Het Belgische team hoopt dat hun werk de weg zal banen voor toekomstig onderzoek. ‘Nu zullen mensen in de gearchiveerde gegevens van andere telescopen naar die lijnen gaan zoeken’, zegt Jehin. ‘We denken dat dit de aanzet zal geven tot nieuw onderzoek op dit terrein.’

Interstellaire zware metalen

Een andere opmerkelijk onderzoek waarvan de resultaten vandaag in Nature zijn gepubliceerd, toont aan dat er ook zware metalen voorkomen in de atmosfeer van de interstellaire komeet 2I/Borisov. Toen dit object – de eerste buitenaardse komeet die ons zonnestelsel heeft bezocht – ongeveer anderhalf jaar geleden voorbijkwam, heeft een Pools team het waargenomen met de X-shooter-spectrograaf van ESO’s VLT. Daarbij hebben de astronomen ontdekt dat de koude atmosfeer van 2I/Borisov gasvormige nikkel bevat.

‘Aanvankelijk konden we maar moeilijk geloven dat atomaire nikkel werkelijk op zo’n grote afstand van de zon aanwezig kon zijn in 2I/Borisov. We hebben alles talloze keren moeten controleren voordat we onszelf uiteindelijk konden overtuigen’, zegt onderzoeksauteur Piotr Guzik van de Jagiellonische Universiteit in Krakau, Polen. De ontdekking is verrassend omdat, tot aan de twee onderzoeken die vandaag zijn gepubliceerd, gassen met atomen van zware metalen alleen zijn waargenomen in hete omgevingen, zoals in de atmosferen van ultrahete exoplaneten of verdampende kometen die te dicht bij de zon kwamen. Maar 2I/Borisov werd waargenomen toen hij zich ongeveer 300 miljoen kilometer van de zon bevond – ongeveer tweemaal de afstand aarde-zon.

Het gedetailleerd onderzoeken van interstellaire objecten is cruciaal voor de wetenschap, omdat zij waardevolle informatie bevatten over de verre planetenstelsels waar ze vandaan komen. ‘Plotseling begrepen we dat gasvormige nikkel aanwezig is in komeet-atmosferen in andere delen van het Melkwegstelsel’, zegt co-auteur Micha? Drahus, eveneens van de Jagiellonische Universiteit.

De Poolse en Belgische onderzoeken tonen aan dat 2I/Borisov en de kometen van ons zonnestelsel nog meer gemeen hebben dan tot nu toe werd gedacht. ‘Stel je eens voor: in andere planetenstelsels komen kometen voor die als twee druppels water op die in ons eigen zonnestelsel lijken – hoe cool is dat?’, concludeert Drahus. Bron: ESO.

Reuzenplaneet op enorme afstand rond zon-achtige ster stelt astronomen voor raadsel


Een directe afbeelding van de exoplaneet YSES 2b (rechtsonder) en de bijbehorende ster (midden). De ster is afgeschermd met een zogeheten coronagraaf. (c) ESO/SPHERE/VLT/Bohn et al.

Een team van sterrenkundigen onder leiding van wetenschappers van de Universiteit Leiden en de Universiteit van Amsterdam heeft via directe beeldvorming een reuzenplaneet ontdekt op enorme afstand van een zon-achtige ster. Waarom die planeet zo zwaar is en hoe die daar verzeild is geraakt, is nog een raadsel. De onderzoekers publiceren hun bevindingen binnenkort in het vakblad Astronomy & Astrophysics.

Het gaat om de planeet YSES 2b op zo’n 360 lichtjaar afstand van de aarde in de richting van het zuidelijke sterrenbeeld Vlieg. De gasplaneet is zes keer zo zwaar als Jupiter, de grootste planeet in ons zonnestelsel. De nieuw ontdekte planeet staat maar liefst 110 keer verder van zijn ster dan dat onze aarde van de zon staat (of 20 keer de afstand zon-Jupiter). De bijbehorende ster is pas 14 miljoen jaar oud en lijkt op onze zon in haar kinderjaren.

De grote afstand tussen planeet en ster stelt de astronomen voor een raadsel, omdat het eigenlijk niet past in de twee gangbare modellen voor de vorming van grote gasplaneten. Als de planeet namelijk op zijn huidige plek ver van de ster zou zijn gegroeid via accretie, dan is hij te zwaar omdat op grote afstand van een ster er te weinig materiaal is om een grote planeet te maken. Maar als de planeet ontstond door zogeheten gravitationele instabiliteit in de planeetvormende schijf, dan is hij weer te licht. Wat nog wel kan, is dat de planeet dichtbij de ster is ontstaan via accretie en daarna naar buiten is gemigreerd. Voor zo’n migratie is de invloed van de zwaartekracht van een tweede planeet nodig en die hebben de onderzoekers nog niet gevonden.

De onderzoekers willen de omgeving van de bijzondere planeet en zijn ster de komende tijd dan ook nader onderzoeken en hopen dan meer te weten te komen over deze reusachtige gasplaneet. Ook gaan ze verder op zoek naar andere gasplaneten rond jonge, zonachtige sterren. Voor het direct in beeld brengen van aardachtige planeten rond zonachtige sterren zijn de huidige telescopen nog niet goed genoeg.

Hoofdonderzoeker Alexander Bohn (Universiteit Leiden): “Als we de komende tijd meer Jupiter-achtige exoplaneten onderzoeken, dan gaan we vast meer begrijpen over de vormingsprocessen van gasreuzen rond zonachtige sterren.”

De planeet YSES 2b is ontdekt met de Young Suns Exoplanet Survey (YSES). Dit onderzoek leverde in 2020 al de eerste directe foto op van een meervoudig planetenstelsel rond een zonachtige ster. De onderzoekers deden hun waarnemingen in 2018 en 2020 met behulp van de Very Large Telescope van de Europese Zuidelijke Sterrenwacht (ESO) in Chili. Ze gebruikten hiervoor het SPHERE-instrument van de telescoop. Dit instrument is mede door Nederland ontwikkeld en kan direct én indirect licht van exoplaneten opvangen.

Wetenschappelijk artikel

Discovery of a directly imaged planet to the young solar analog YSES 2. Door: Alexander J. Bohn et al. Geaccepteerd voor publicatie in Astronomy & Astrophysics. Origineel: https://www.aanda.org/10.1051/0004-6361/202140508.
Gratis preprint (pdf): https://www.astronomie.nl/upload/files/2021/Bohn-et-al-2021.pdf.

Bron: Astronomie.nl.

Astronomen brengen spinrag van kosmisch web in kaart

Een beeld van zo’n twee miljard jaar na de oerknal in het sterrenbeeld Fornax (Oven). Elk lichtpuntje is een compleet sterrenstelsel. Het blauwe spinrag van het kosmische web is met MUSE ontdekt. Het gas strekt zich uit over een afstand van 15 miljoen lichtjaar. Dat is ongeveer gelijk aan 150 keer onze Melkweg achter elkaar gelegd. (c) ESO/NASA/Roland Bacon et al.

Een internationaal team van astronomen, onder wie een aantal Nederlanders, heeft voor het eerst een stukje kosmisch web in kaart gebracht, zonder gebruik te maken van felle quasars. Ze publiceren hun bevindingen binnenkort in het vakblad Astronomy & Astrophysics.

Sterrenkundigen gaan er al langer vanuit dat de miljarden sterrenstelsels in ons heelal verbonden zijn via een enorm kosmisch web van gasstromen. Het web zelf is lastig te zien, omdat het bijna geen licht geeft. Tot nu toe waren wel knooppunten in het kosmische web in kaart gebracht aan de hand van quasars. Dat zijn superzware zwarte gaten in de centra van sterrenstelsels waarvan de omgeving enorme hoeveelheden licht uitzendt. Het licht wordt vervolgens verstrooid door het kosmische web en daardoor wordt het web rond de quasars zichtbaar. Helaas zijn quasars zeldzaam. Bovendien bevinden ze zich alleen op knooppunten van het kosmische web. Daardoor leveren ze een beperkt beeld op.

Nu is het onderzoekers voor het eerst gelukt om een klein stuk van het kosmisch web te zien zónder quasars te gebruiken. Een team geleid door Roland Bacon (CNRS, Centre de Recherche Astrophysique de Lyon, Frankrijk) richtte de Very Large Telescope 140 uur lang (verspreid over zes nachten tussen augustus 2018 en januari 2019) op een deel van het iconische Hubble Ultra Deep Field.

Met behulp van de Multi Unit Spectroscopic Explorer (MUSE) konden de onderzoekers het licht van groepjes sterren en sterrenstelsels opvangen dat verstrooid werd door gasfilamenten van het kosmische web. Het gaat om licht van zo’n twee miljard jaar na de oerknal.

Uit de waarnemingen bleek dat mogelijk meer dan de helft van het verstrooide licht niet van grote felle stralingsbronnen komt, maar van een zee van tot nu toe onontdekte sterrenstelsels met een zeer lage lichtkracht die veel te zwak zijn om afzonderlijk te kunnen worden waargenomen.

Het onderzoek versterkt de hypothese dat het jonge heelal bestond uit enorme aantallen, kleine groepjes pasgevormde sterren. Mede-auteur Joop Schaye (Sterrewacht Leiden, Universiteit Leiden): “We denken dat het licht dat we zien voornamelijk afkomstig is van jonge sterrenstelsels die elk miljoenen keren minder sterren bevatten dan ons eigen Melkwegstelsel. Dergelijke piepkleine stelsels zijn waarschijnlijk verantwoordelijk geweest voor het einde van de kosmische donkere tijden, toen minder dan een miljard jaar na de oerknal het heelal werd verlicht en verhit door de eerste generaties sterren.”

Mede-auteur Michael Maseda (Sterrewacht Leiden, Universiteit Leiden) voegt toe: “De MUSE waarnemingen geven ons dus niet alleen een beeld van het kosmisch web, maar leveren ook nieuw bewijs voor het bestaan van de extreem kleine sterrenstelsels die een zo cruciale rol vervullen in modellen van het vroege heelal.”

In de toekomst willen de astronomen graag grotere stukken van het kosmische web in kaart brengen. Daarom werken de sterrenkundigen aan een verbetering van het MUSE-instrument zodat het een twee tot vier keer grotere blikveld oplevert.

Wetenschappelijk artikel
The MUSE Extremely Deep Field: the Cosmic Web in Emission at High Redshift. By: Roland Bacon et al. Accepted for publication in Astronomy & Astrophysics.
Origineel: https://doi.org/10.1051/0004-6361/202039887
Gratis preprint: https://arxiv.org/abs/2102.05516v1

Bron: Astronomie.nl.

Verste quasar met krachtige radiojets ontdekt

Artistieke impressie van quasar P172+18. Credit: ESO/M. Kornmesser.

Met behulp van de Very Large Telescope (VLT) van de Europese Zuidelijke Sterrenwacht (ESO) hebben astronomen de verst bekende bron van radiostraling ontdekt en onderzocht. Het gaat om een ‘radio-luide’ quasar – een helder object met krachtige jets dat straling op radiogolflengten uitzendt – die zo ver weg is dat zijn licht er 13 miljard over heeft gedaan om ons te bereiken. De ontdekking kan belangrijke aanwijzingen opleveren die astronomen meer inzicht geven in het vroege heelal.

Quasars zijn zeer heldere objecten die zich in de centra van sommige sterrenstelsels bevinden en worden aangedreven door superzware zwarte gaten. Als zo’n zwart gat gas uit de omgeving opslokt, komt energie vrij, waardoor het object tot op zeer grote afstand waarneembaar is.

De nu ontdekte quasar, met de bijnaam P172+18, is zo ver weg dat zijn licht er ongeveer 13 miljard jaar over heeft gedaan om ons te bereiken. We zien hem dus zoals hij was toen het heelal nog maar ongeveer 780 miljoen jaar oud was. Hoewel er nóg verdere quasars bekend zijn, is het voor het eerst dat astronomen erin zijn geslaagd om de karakteristieke signaturen van radiojets bij zo’n vroege quasar te herkennen. Slechts ongeveer tien procent van alle quasars – die astronomen als ‘radio-luid’ aanmerken – heeft jets die helder stralen op radiofrequenties [1]Radiogolven hebben frequenties tussen 30 Hz en 300 GHz..

P172+18 wordt aangedreven door een zwart gat dat ongeveer 300 miljoen keer zoveel massa heeft als onze zon en in verbluffend tempo gas opslokt. ‘Het zwarte gat is enorm gulzig: zijn massatoename behoort tot de grootste die ooit zijn waargenomen’, aldus astronoom Chiara Mazzucchelli, staflid bij ESO in Chili, die samen met Eduardo Bañados van het Max-Planck-Institut für Astronomie in Duitsland, leiding gaf aan het onderzoek dat tot de ontdekking heeft geleid.

Groothoekopname van het hemelgebied rond quasar P172+18. Credit:
ESO and Digitized Sky Survey 2. Acknowledgment: Davide De Martin.

De astronomen denken dat er een verband bestaat tussen de snelle groei van superzware zwarte gaten en de krachtige radiojets zoals die bij quasars als P172+18 worden waargenomen. Vermoed wordt dat de jets in staat zijn om het gas in de omgeving van het zwarte gat te verstoren, waardoor dit in verhoogd tempo gas aangevoerd krijgt. Daarom kan het onderzoek van radio-luide quasars belangrijke inzichten opleveren over hoe zwarte gaten in het vroege heelal zo snel na de oerknal superzware massa’s hebben kunnen bereiken.

‘Ik vind het heel spannend om voor het eerst ‘nieuwe’ zwarte gaten te ontdekken, en een extra steentje te kunnen bijdragen aan ons begrip van het vroege heelal – waar uiteindelijk ook onze eigen oorsprong ligt,’ zegt Mazzucchelli.

Bañados en Mazzucchelli waren de eersten die, met behulp van de Magellan-telescoop van de Las Campanas-sterrenwacht in Chili, P172+18 als een verre quasar herkenden. ‘Toen we de data binnenkregen en op het oog inspecteerden, zagen we direct dat we de tot nu toe verste radio-luide quasar hadden opgespoord,’ aldus Bañados.

Vanwege de korte observatietijd had het team echter niet genoeg data om het object in detail te onderzoeken. Een reeks van waarnemingen met andere telescopen, onder meer met het X-shooter-instrument van ESO’s Very Large Telescope, stelde de astronomen in staat om dieper in de eigenschappen van de quasar te duiken en belangrijke eigenschappen te bepalen zoals de massa van het zwarte gat en de snelheid waarmee dit materie uit zijn omgeving opslokt. Ook de Very Large Array van de National Radio Astronomy Observatory en de Keck-telescoop, beide in de VS, hebben aan het onderzoek bijgedragen.

Hoewel het team uitgelaten is over hun ontdekking, die in The Astrophysical Journal wordt gepubliceerd, vermoeden de astronomen dat deze radio-luide quasar slechts het topje van de ijsberg is en dat er nog meer zullen worden ontdekt – misschien zelfs op nog grotere afstanden. ‘Deze ontdekking stemt me optimistisch, en ik denk – en hoop – dat dit afstandsrecord snel gebroken wordt,’ zegt Bañados.

Waarnemingen met faciliteiten zoals ALMA, waarin ESO partner is, en met ESO’s toekomstige Extremely Large Telescope (ELT) kunnen helpen om meer van deze objecten in het vroege heelal te ontdekken en in detail te bestuderen. Bron: ESO.

References[+]

References
1 Radiogolven hebben frequenties tussen 30 Hz en 300 GHz.

Astronomen zien ster met stofschijf die gevoed wordt

SU Aur, een ster die veel jonger en zwaarder is dan de zon, lijkt op een vliegende vogel met uitgestrekte vleugels in de ruimte. (c) ESO/Ginski et al.

Een internationaal team van sterrenkundigen onder Nederlandse leiding heeft een jonge ster in beeld waarbij de omringende stofschijf nog steeds gevoerd wordt vanuit de omgeving. Dit verschijnsel rond de ster SU Aur kan verklaren waarom zoveel exoplaneten niet netjes uitgelijnd zijn met hun ster. De foto is uitgeroepen tot foto van de week van de Europese Zuidelijke Sterrenwacht (ESO). Het bijbehorende onderzoek verschijnt in Astrophysical Journal Letters.

SU Aur of voluit SU Aurigae is een ster die veel jonger en zwaarder is dan onze zon. Hij is ongeveer 4 miljoen jaar oud en staat op ongeveer 500 lichtjaar van de aarde in het sterrenbeeld Voerman (Auriga). De ster is niet te zien met het blote oog.

Een internationaal team van onderzoekers bracht met behulp van het SPHERE-instrument op de Very Large Telescope de ster en zijn omgeving in detail in kaart. Ze deden dat in de nacht van 14 december 2019 en wisten 55 minuten aan gegevens binnen te halen. Daarna combineerden ze hun gegevens met eerdere waarnemingen van de Atacama Large Millimeter/ Submillimeter Array (ALMA) en de ruimtetelescoop Hubble.

De stofstaarten in de nieuwe afbeelding komen uit de omringende nevel die waarschijnlijk gevormd is nadat de ster botste met een enorme wolk van gas en stof. Door de verschillende waarnemingen met elkaar te combineren, konden de sterrenkundigen afleiden dat er nog steeds materiaal vanuit de nevel en de staarten naar de stofschijf valt. Ook zagen de onderzoekers dat de ster en de stofschijf waarin mogelijk planeten gaan ontstaan, niet netjes op een lijn draaien. Ze vermoeden dat de materiaalaanvoer de verkeerde uitlijning veroorzaakt.

Bewegend plaatje van SU Aur (dubbelklikken voor de animatie). De afbeelding ontstaat door het combineren van de gegevens van de Very Large Telescope met die van ALMA. De blauwe contourlijnen bevatten stof dat naar ons toe beweegt. De rode lijntjes toont materiaal dat van ons af beweegt. Mede dankzij deze waarnemingen ontdekten de sterrenkundigen dat er nog steeds materiaal op de stofschijf rond de ster valt. (c) Ginski et al.

Hoofdonderzoeker Christian Ginski (Universiteit van Amsterdam) legt uit: “Er zijn al veel volgroeide combinaties van exoplaneten en sterren bekend die niet netjes zijn uitgelijnd, maar hoe die verkeerde uitlijning is gebeurd, is onduidelijk. Onze nieuwe waarneming laat zien dat de verkeerde uitlijning al kan ontstaan in de stofschijf waar exoplaneten aan het groeien zijn.”

De onderzoekers gaan de komende tijd extra goed kijken naar SU Aur om te kijken of er jonge exoplaneten ronddraaien. Daarnaast richten de astronomen hun telescopen op nog 84 andere jonge sterren met stofschijven. Ze willen onder meer uitzoeken of er vaak nieuw materiaal vanuit de omgeving op de stofschijf valt. Als dat zo is, dan zou dat wel eens de belangrijkste oorzaak kunnen gaan worden voor de vele niet netjes uitgelijnde exoplaneten.

Wetenschappelijk artikel
Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): Late infall causing disk misalignment and dynamic structures in SU Aur. Door: Christian Ginski et al. In: Astrophysical Journal Letters, 18 februari 2021.
Orgineel: https://iopscience.iop.org/article/10.3847/2041-8213/abdf57
Gratis preprint: https://arxiv.org/abs/2102.08781

Bron: Astronomie.nl

Sterrenkundigen zien wervelwind rondom mogelijke exoplaneet-in-wording

Een schematische weergave van de wervelwind rondom de mogelijke exoplaneet-in-wording rond de ster HD 163296 . De felgele vlek rechtsboven duidt op een gebied met warm stof en gruis waar waarschijnlijk een planeet gevormd wordt. (c) J. Varga et al.

Een internationaal team van sterrenkundigen onder Nederlandse leiding heeft een wervelwind van stof en gruis ontdekt in een baan rond een jonge ster. In het gruis is zich mogelijk een planeet aan het vormen. Het team van wetenschappers deed de ontdekking in de tijd die bouwers en bedenkers van een astronomisch instrument krijgen als beloning voor hun werk. Ze publiceren hun bevindingen binnenkort in het vakblad Astronomy & Astrophysics.

De exoplaneet-in-wording draait in een nauwe baan om de ster HD 163296. Dat is een door astronomen veel bestudeerde jonge ster op ongeveer 330 lichtjaar afstand van de aarde in het sterrenbeeld Boogschutter. Eerder al vonden sterrenkundigen aanwijzingen voor de vorming van drie grote exoplaneten in een wijde baan om de ster. Nu komt daar dus mogelijk een vierde planeet dichtbij de ster bij.

De onderzoekers onder leiding van Jozsef Varga (Universiteit Leiden) bestudeerden de ster tijdens vier nachten in maart en juni 2019. Ze hadden hun telescoop gericht op het binnenste deel van de schijf van stof en gruis die om de ster draait. De sterrenkundigen zagen een ring van warm, fijn stof op een afstand van de ster die te vergelijken is met de baan van Mercurius om onze zon. Opmerkelijk was dat een deel van de ring veel helderder, dus heter was dan de rest van de ring. Deze hete vlek leek in een maand een rondje te draaien om de ster.

De astronomen vermoeden dat de hete vlek met warm, fijn stof een wervelwind in de schijf is waaruit een planeet kan worden gevormd. Ze kunnen hun vermoeden onderbouwen met simulaties. Terwijl in de rest van de schijf stof en gruis samenklontert, worden in de wervelwind de kiezels juist vermalen tot fijn stof. Dat fijne stof is zichtbaar in de hete vlek.

Het MATISSE-instrument bevindt zich op de de Very Large Telescope Interferometer (VLTI) van de ESO-sterrenwacht te Paranal, in het noorden van Chili. (c) ESO/P. Horálek

MATISSE

De onderzoekers deden hun ontdekking met het nieuwe MATISSE-instrument. Dat instrument combineert en analyseert het licht van vier telescopen van de Very Large Telescope van de ESO-sterrenwacht op Cerro Paranal, in het noorden van Chili. Daardoor ontstaat een samengestelde telescoop met een virtuele diameter van 200 meter. Het MATISSE-instrument is speciaal gemaakt om infraroodstraling te analyseren. Die straling ontstaat als iets, bijvoorbeeld een planeet of stofschijf warmte afgeeft. Het instrument wordt gekoeld zodat het niet zelf infraroodstraling uitzendt.

De Nederlandse Onderzoekschool voor Astronomie (NOVA) bouwde alle lenzen en spiegels in het gekoelde deel van MATISSE samen met de Nederlandse industrie. In 2018 zag MATISSE zijn ‘eerste licht’ met een serie testwaarnemingen.

Toekomst

Voor de onderzoekers en ontwikkelaars van onder meer de Universiteit Leiden, Universiteit van Amsterdam, Radboud Universiteit Nijmegen, SRON en de NOVA Optische Infraroodgroep vormt dit eerste, echte wetenschappelijke resultaat het begin van verder onderzoek. Ze willen onder andere meer sterren met stofschijven bestuderen en dan met name stofschijven waarin aardachtige planeten kunnen vormen.

Wetenschappelijk artikel
The asymmetric inner disk of the Herbig Ae star HD 163296 in the eyes of VLTI/MATISSE: evidence for a vortex? Door: J. Varga et. al. Geaccepteerd voor publicatie in Astronomy & Astrophysics (origineelgratis preprint)

Bron: Astronomie.nl.